Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Mol Biol ; 433(18): 167118, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1281466

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral Mpro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of Mpro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 Mpro. For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the Mpro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.


Asunto(s)
Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Dimerización , Humanos
2.
mBio ; 12(3): e0142321, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1280400

RESUMEN

The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors. IMPORTANCEIn vitro interrogations of the central replicative complex of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), by structural, biochemical, and biophysical methods yielded an unprecedented windfall of information that, in turn, instructs drug development and administration, genomic surveillance, and other aspects of the evolving pandemic response. They also illuminated the vast disparity in the methods used to produce RdRp for experimental work and the hidden impact that this has on enzyme activity and research outcomes. In this report, we elucidate the positive and negative effects of codon optimization on the activity and folding of the recombinant RdRp and detail the design of a highly sensitive in vitro assay of RdRp-dependent RNA synthesis. Using this assay, we demonstrate that RdRp is allosterically activated by nontemplating phosphorylated nucleotides, including naturally occurring alarmone ppGpp and synthetic remdesivir triphosphate.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Guanosina Tetrafosfato/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Trifosfato/farmacología , Dominio Catalítico/fisiología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Humanos , Ribosomas/metabolismo , Tratamiento Farmacológico de COVID-19
3.
J Med Virol ; 93(3): 1581-1588, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1196480

RESUMEN

The papain-like protease (PLpro ) is an important enzyme for coronavirus polyprotein processing, as well as for virus-host immune suppression. Previous studies reveal that a molecular analysis of PLpro indicates the catalytic activity of viral PLpro and its interactions with ubiquitin. By using sequence comparisons, molecular models, and protein-protein interaction maps, PLpro was compared in the three recorded fatal CoV epidemics, which involved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome CoV (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV). The pairwise sequence comparison of SARS-CoV-2 PLpro indicated similarity percentages of 82.59% and 30.06% with SARS-CoV PLpro and MERS-CoV PLpro , respectively. In comparison with SARS-CoV PLpro , in SARS-CoV-2, the PLpro had a conserved catalytic triad of C111, H278, and D293, with a slightly lower number of polar interface residues and of hydrogen bonds, a higher number of buried interface sizes, and a lower number of residues that interact with ubiquitin and PLpro . These features might contribute to a similar or slightly lower level of deubiquitinating activity in SARS-CoV-2 PLpro. It was, however, a much higher level compared to MERS-CoV, which contained amino acid mutations and a low number of polar interfaces. SARS-CoV-2 PLpro and SARS-CoV PLpro showed almost the same catalytic site profiles, interface area compositions and polarities, suggesting a general similarity in deubiquitination activity. Compared with MERS-CoV, SARS-CoV-2 had a higher potential for binding interactions with ubiquitin. These estimated parameters contribute to the knowledge gap in understanding how the new virus interacts with the immune system.


Asunto(s)
COVID-19/patología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , SARS-CoV-2/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Secuencia de Aminoácidos , Dominio Catalítico/fisiología , Humanos , Modelos Moleculares , Poliproteínas/biosíntesis , Poliproteínas/genética , Alineación de Secuencia , Síndrome Respiratorio Agudo Grave/patología , Ubiquitina/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/genética
4.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1186193

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Asunto(s)
Dominio Catalítico/fisiología , Unión Proteica/fisiología , Proteínas no Estructurales Virales/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA